Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 332: 121857, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431387

RESUMEN

Properties of cellulose are typically functionalized by organic chemistry means. We progress an alternative facile way to functionalize cellulose by functional group counter-cation exchange. While ion-exchange is established for cellulose, it is far from exploited and understood beyond the most common cation, sodium. We build on our work that established the cation exchange for go-to alkali metal cations. We expand and further demonstrate the introduction of functional cations, namely, lanthanides. We show that cellulose nanocrystals (CNCs) carrying sulfate-half ester groups can acquire properties through the counter-cation exchange. Trivalent lanthanide cations europium (Eu3+), dysprosium (Dy3+) and gadolinium (Gd3+) were employed. The respective ions showed distinct differences in their ability of being coordinated by the sulfate groups; with Eu3+ fully saturating the sulfate groups while for Gd3+ and Dy3+, values of 82 and 41 % were determined by compositional analysis. CNCs functionalized with Eu3+ displayed red emission, those containing Dy3+ exhibited no optical functionality, while those with Gd3+ revealed significantly altered magnetic relaxation times. Using cation exchange to alter cellulose properties in various ways is a tremendous opportunity for modification of the abundant cellulose raw materials for a renewable future.

2.
ACS Appl Mater Interfaces ; 15(47): 54249-54265, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37975260

RESUMEN

A facile novel approach of introducing dopamine and [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide via dopamine-triggered in situ synthesis into gelatin hydrogels in the presence of ZnSO4 is presented in this study. Remarkably, the resulting hydrogels showed 99.99 and 100% antibacterial efficiency against Gram-positive and Gram-negative bacteria, respectively, making them the highest performing surfaces in their class. Furthermore, the hydrogels showed adhesive properties, self-healing ability, antifreeze properties, electrical conductivity, fatigue resistance, and mechanical stability from -100 to 80 °C. The added multifunctional performance overcomes several disadvantages of gelatin-based hydrogels such as poor mechanical properties and limited thermostability. Overall, the newly developed hydrogels show significant potential for numerous biomedical applications, such as wearable monitoring sensors and antibacterial coatings.


Asunto(s)
Gelatina , Hidrogeles , Hidrogeles/farmacología , Dopamina , Antibacterianos/farmacología , Biomimética , Bacterias Gramnegativas , Bacterias Grampositivas , Conductividad Eléctrica
3.
Acta Biomater ; 168: 42-77, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481193

RESUMEN

To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Polisacáridos/farmacología , Materiales Biocompatibles Revestidos/farmacología
4.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242022

RESUMEN

To counter the rising threat of bacterial infections in the post-antibiotic age, intensive efforts are invested in engineering new materials with antibacterial properties. The key bottleneck in this initiative is the speed of evaluation of the antibacterial potential of new materials. To overcome this, we developed an automated pipeline for the prediction of antibacterial potential based on scanning electron microscopy images of engineered surfaces. We developed polymer composites containing graphite-oriented nanoplatelets (GNPs). The key property that the algorithm needs to consider is the density of sharp exposed edges of GNPs that kill bacteria on contact. The surface area of these sharp exposed edges of GNPs, accessible to bacteria, needs to be inferior to the diameter of a typical bacterial cell. To test this assumption, we prepared several composites with variable distribution of exposed edges of GNP. For each of them, the percentage of bacterial exclusion area was predicted by our algorithm and validated experimentally by measuring the loss of viability of the opportunistic pathogen Staphylococcus epidermidis. We observed a remarkable linear correlation between predicted bacterial exclusion area and measured loss of viability (R2 = 0.95). The algorithm parameters we used are not generally applicable to any antibacterial surface. For each surface, key mechanistic parameters must be defined for successful prediction.

5.
Langmuir ; 39(18): 6433-6446, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37096902

RESUMEN

Attractive (non-self-assembling) aqueous cellulose nanocrystal (CNC) suspensions were topologically tailored into isotropic gels through the surface grafting of dialkyl groups. We thus focus on the influence of CNC concentration, including for pristine CNC, surface linker branching, branching degree, and the influence of side group size and branch-on-branch surface-grafted groups. The resulting mobility and strength of interaction in particle-particle interaction mediated by the surface groups was investigated from a rheological point of view. The emphasis is on nonlinear material parameters from Fourier-transform rheology and stress decomposition analysis. The results show that nonlinear material parameters are more sensitive than linear viscoelastic parameters to the onset of weakly interconnected networks in pristine CNC isotropic suspensions. All surface-modified CNC suspensions resulted in isotropic gels. The nonlinear material parameters were found to be broadly sensitive to CNC concentration, branching, degree of branching and surface-grafted linkers' length. However, the length of the grafted chains and the degree of branching were the primary factors influencing the nonlinear material response. Furthermore, the results showed evidence of two strain amplitude ranges with distinct nonlinear signatures that could be attributed to the disruption of weak network connection points and to distortions of more dense (aggregate) network regions, respectively.

6.
Carbohydr Polym ; 308: 120622, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813332

RESUMEN

We examine the influence of surface charge on the percolation, gel-point and phase behavior of cellulose nanocrystal (CNC) suspensions in relation to their nonlinear rheological material response. Desulfation decreases CNC surface charge density which leads to an increase in attractive forces between CNCs. Therefore, by considering sulfated and desulfated CNC suspensions, we are comparing CNC systems that differ in their percolation and gel-point concentrations relative to their phase transition concentrations. The results show that independently of whether the gel-point (linear viscoelasticity, LVE) occurs at the biphasic - liquid crystalline transition (sulfated CNC) or at the isotropic - quasi-biphasic transition (desulfated CNC), the nonlinear behavior appears to mark the existence of a weakly percolated network at lower concentrations. Above this percolation threshold, nonlinear material parameters are sensitive to the phase and gelation behavior as determined in static (phase) and LVE conditions (gel-point). However, the change in material response in nonlinear conditions can occur at higher concentrations than identified through polarized optical microscopy, suggesting that the nonlinear deformations could distort the suspensions microstructure such that for example a liquid crystalline phase (static) suspension could show microstructural dynamics similar to a biphasic system.

7.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144921

RESUMEN

Sulfate groups on cellulose particles such as cellulose nanocrystals (CNCs) provide colloidal stability credit to electrostatic repulsion between the like-charged particles. The introduction of sodium counter cations on the sulfate groups enables drying of the CNC suspensions without irreversible aggregation. Less is known about the effect of other counter cations than sodium on extending the properties of the CNC particles. Here, we introduce the alkali metal counter cations, Li+, Na+, K+, Rb+, and Cs+, on sulfated CNCs without an ion exchange resin, which, so far, has been a common practice. We demonstrate that the facile ion exchange is an efficient method to exchange to any alkali metal cation of sulfate half esters, with exchange rates between 76 and 89%. The ability to form liquid crystalline order in rest was observed by the presence of birefringence patterns and followed the Hofmeister series prediction of a decreasing ability to form anisotropy with an increasing element number. However, we observed the K-CNC rheology and birefringence as a stand-out case within the series of alkali metal modifications, with dynamic moduli and loss tangent indicating a network disruptive effect compared to the other counter cations, whereas observation of the development of birefringence patterns in flow showed the absence of self- or dynamically-assembled liquid crystalline order.

8.
ACS Appl Nano Mater ; 5(4): 4731-4743, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35492439

RESUMEN

In nature, chitin is organized in hierarchical structures composed of nanoscale building blocks that show outstanding mechanical and optical properties attractive for nanomaterial design. For applications that benefit from a maximized interface such as nanocomposites and Pickering emulsions, individualized chitin nanocrystals (ChNCs) are of interest. However, when extracted in water suspension, their individualization is affected by ChNC self-assembly, requiring a large amount of water (above 90%) for ChNC transport and stock, which limits their widespread use. To master their individualization upon drying and after regeneration, we herein report a waterborne topochemical one-pot acid hydrolysis/Fischer esterification to extract ChNCs from chitin and simultaneously decorate their surface with lactate or butyrate moieties. Controlled reaction conditions were designed to obtain nanocrystals of a comparable aspect ratio of about 30 and a degree of modification of about 30% of the ChNC surface, under the rationale to assess the only effect of the topochemistry on ChNC supramolecular organization. The rheological analysis coupled with polarized light imaging shows how the nematic structuring is hindered by both surface ester moieties. The increased viscosity and elasticity of the modified ChNC colloids indicate a gel-like phase, where typical ChNC clusters of liquid crystalline phases are disrupted. Pickering emulsions have been prepared from lyophilized nanocrystals as a proof of concept. Our results demonstrate that only the emulsions stabilized by the modified ChNCs have excellent stability over time, highlighting that their individualization can be regenerated from the dry state.

9.
Carbohydr Polym ; 285: 119262, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35287874

RESUMEN

Steam jet-cooking allows for efficient dissolution of cationic starch in paper production as it operates above the boiling point of water at elevated pressures. However, the processes involved during jet-cooking and its consequences on dissolution and finally paper properties have not been fully resolved so far. As cationic starch is the most important paper additive in the wet end, any energy or material savings during dissolution will enhance the ecologic and economic performance of a paper mill. Here, we address the topic of solubilization of four different industrially relevant cationic starches processed via steam jet-cooking. We showcase that rheology is a useful tool to assess the solubility state of starches. Some starches featured liquid-like rheological behavior (loss moduli, G", greater than storage moduli, G') in linear viscoelastic tests and anti-thixotropic behavior in hysteresis loop tests. In contrast, cationic corn starches exhibited gel-like behavior (G' > G″) and negligible hysteresis directly after cooking. HYPOTHESES: To evaluate the decisive factors for complete dissolution of industrial cationic starches using jet-cooking and to correlate them to rheological properties.

10.
ACS Nano ; 15(5): 7931-7945, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33756078

RESUMEN

Cellulose nanocrystals (CNCs) self-assemble and can be flow-assembled to liquid crystalline orders in a water suspension. The orders range from nano- to macroscale with the contributions of individual crystals, their micron clusters, and macroscopic assemblies. The resulting hierarchies are optically active materials that exhibit iridescence, reflectance, and light transmission. Although these assemblies have the potential for future renewable materials, details about structures on different hierarchical levels that span from the nano- to the macroscale are still not unraveled. Rheological characterization is essential for investigating flow properties; however, bulk material properties make it difficult to capture the various length-scales during assembly of the suspensions, for example, in simple shear flow. Rheometry is combined with other characterization methods to allow direct analysis of the structure development in the individual hierarchical levels. While optical techniques, scattering, and spectroscopy are often used to complement rheological observations, coupling them in situ to allow simultaneous observation is paramount to fully understand the details of CNC assembly from liquid to solid. This Review provides an overview of achievements in the coupled analytics, as well as our current opinion about opportunities to unravel the structural distinctiveness of cellulose nanomaterials.

11.
Small ; 17(7): e2006229, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33502102

RESUMEN

Self-assembled materials such as lyotropic liquid crystals offer a wide variety of structures and applications by tuning the composition. Understanding materials behavior under flow and the induced alignment is wanted in order to tailor structure related properties. A method to visualize the structure and anisotropy of ordered systems in situ under dynamic conditions is presented where flow-induced nanostructural alignment in microfluidic channels is observed by scanning small angle X-ray scattering in hexagonal and lamellar self-assembled phases. In the hexagonal phase, the material in regions with high extensional flow exhibits orientation perpendicular to the flow and is oriented in the flow direction only in regions with a high enough shear rate. For the lamellar phase, a flow-induced morphological transition occurs from aligned lamellae toward multilamellar vesicles. However, the vesicles do not withstand the mechanical forces and break in extended lamellae in regions with high shear rates. This evolution of nanostructure with different shear rates can be correlated with a shear thinning viscosity curve with different slopes. The results demonstrate new fundamental knowledge about the structuring of liquid crystals under flow. The methodology widens the quantitative investigation of complex structures and identifies important mechanisms of reorientation and structural changes.

12.
Chemphyschem ; 22(3): 250-263, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33244859

RESUMEN

Biomedical application of graphene derivatives have been intensively studied in last decade. With the exceptional structural, thermal, electrical, and mechanical properties, these materials have attracted immense attention of biomedical scientists to utilize graphene derivatives in biomedical devices to improve their performance or to achieve desired functions. Surfaces of graphene derivatives including graphite, graphene, graphene oxide and reduce graphene oxide have been demonstrated to pave an excellent platform for antimicrobial behavior, enhanced biocompatibility, tissue engineering, biosensors and drug delivery. This review focuses on the recent advancement in the research of biomedical devices with the coatings or highly structured polymer nanocomposite surfaces of graphene derivatives for antimicrobial activity and sterile surfaces comprising an entirely new class of antibacterial materials. Overall, we aim to highlight on the potential of these materials, current understanding and knowledge gap in the antimicrobial behavior and biocompatibility to be utilized of their coatings to prevent the cross infections.


Asunto(s)
Antiinfecciosos/química , Grafito/química , Materiales Biocompatibles , Infección Hospitalaria/prevención & control , Humanos , Propiedades de Superficie
13.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942569

RESUMEN

Bacteria are known to form biofilms on various surfaces. Biofilms are multicellular aggregates, held together by an extracellular matrix, which is composed of biological polymers. Three principal components of the biofilm matrix are exopolysaccharides (EPS), proteins, and nucleic acids. The biofilm matrix is essential for biofilms to remain organized under mechanical stress. Thanks to their polymeric nature, biofilms exhibit both elastic and viscous mechanical characteristics; therefore, an accurate mechanical description needs to take into account their viscoelastic nature. Their viscoelastic properties, including during their growth dynamics, are crucial for biofilm survival in many environments, particularly during infection processes. How changes in the composition of the biofilm matrix affect viscoelasticity has not been thoroughly investigated. In this study, we used interfacial rheology to study the contribution of the EPS component of the matrix to viscoelasticity of Bacillus subtilis biofilms. Two strategies were used to specifically deplete the EPS component of the biofilm matrix, namely (i) treatment with sub-lethal doses of vitamin C and (ii) seamless inactivation of the eps operon responsible for biosynthesis of the EPS. In both cases, the obtained results suggest that the EPS component of the matrix is essential for maintaining the viscoelastic properties of bacterial biofilms during their growth. If the EPS component of the matrix is depleted, the mechanical stability of biofilms is compromised and the biofilms become more susceptible to eradication by mechanical stress.


Asunto(s)
Bacillus subtilis/metabolismo , Biopelículas/crecimiento & desarrollo , Matriz Extracelular/metabolismo , Polisacáridos Bacterianos/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Operón/genética , Reología , Viscosidad
14.
Polymers (Basel) ; 12(6)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521812

RESUMEN

The mechanical properties of novel low percolation melt-mixed 3D hierarchical graphene/polypropylene nanocomposites are analyzed in this study. The analysis spans a broad range of techniques and time scales, from impact to tensile, dynamic mechanical behavior, and creep. The applicability of the time-temperature superposition principle and its limitations in the construction of the master curve for the isotactic polypropylene (iPP)-based graphene nanocomposites has been verified and presented. The Williams-Landel-Ferry method has been used to evaluate the dynamics and also Cole-Cole curves were presented to verify the thermorheological character of the nanocomposites. Short term (quasi-static) tensile tests, creep, and impact strength measurements were used to evaluate the load transfer efficiency. A significant increase of Young's modulus with increasing filler content indicates reasonably good dispersion and adhesion between the iPP and the filler. The Young's modulus results were compared with predicted modulus values using Halpin-Tsai model. An increase in brittleness resulting in lower impact strength values has also been recorded.

15.
Small ; 16(5): e1904756, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31916683

RESUMEN

Graphene coatings composed of vertical spikes are shown to mitigate bacterial attachment. Such coatings present hydrophobic edges of graphene, which penetrate the lipid bilayers causing physical disruption of bacterial cells. However, manufacturing of such surfaces on a scale required for antibacterial applications is currently not feasible. This study explores whether graphite can be used as a cheaper alternative to graphene coatings. To examine this, composites of graphite nanoplatelets (GNP) and low-density polyethylene (LDPE) are extruded in controlled conditions to obtain controlled orientation of GNP flakes within the polymer matrix. Flakes are exposed by etching the surface of GNP-LDPE nanocomposites and antibacterial activity is evaluated. GNP nanoflakes on the extruded samples interact with bacterial cell membranes, physically damaging the cells. Bactericidal activity is observed dependent on orientation and nanoflakes density. Composites with high density of GNP (≥15%) present two key advantages: i) they decrease bacterial viability by a factor of 99.9999%, which is 10 000-fold improvement on the current benchmark, and ii) prevent bacterial colonization, thus drastically reducing the numbers of dead cells on the surface. The latter is a key advantage for longer-term biomedical applications, since these surfaces will not have to be cleaned or replaced for longer periods.


Asunto(s)
Grafito , Nanocompuestos , Polímeros , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Grafito/química , Grafito/farmacología , Nanocompuestos/química , Polímeros/química , Polímeros/farmacología
16.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835842

RESUMEN

Graphene-based materials are a family of carbonaceous structures that can be produced using a variety of processes either from graphite or other precursors. These materials are typically a few layered sheets of graphene in the form of platelets and maintain some of the properties of pristine graphene (such as two-dimensional platelet shape, aspect ratio, and graphitic bonding). In this work we present melt mixed graphene-based polypropylene systems with significantly reduced percolation threshold. Traditionally melt-mixed systems suffer from poor dispersion that leads to high electrical percolation values. In contrast in our work, graphene was added into an isotactic polypropylene matrix, achieving an electrical percolation threshold of ~1 wt.%. This indicates that the filler dispersion process has been highly efficient, something that leads to the suppression of the ß phase that have a strong influence on the crystallization behavior and subsequent thermal and mechanical performance. The electrical percolation values obtained are comparable with reported solution mixed systems, despite the use of simple melt mixing protocols and the lack of any pre or post-treatment of the final compositions. The latter is of particular importance as the preparation method used in this work is industrially relevant and is readily scalable.

17.
Nanomaterials (Basel) ; 9(11)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703339

RESUMEN

Graphene nanosheets and thicker graphite nanoplatelets are being used as reinforcement in polymeric materials to improve the material properties or induce new functional properties. By improving dispersion, de-agglomerating the particles, and ensuring the desired orientation of the nano-structures in the matrix, the microstructure can be tailored to obtain specific material properties. A novel surface image assisted modeling framework is proposed to understand functional properties of the graphene enhanced polymer. The effective thermal and mechanical responses are assessed based on computational homogenization. For the mechanical response, the 2-D nanoplatelets are modeled as internal interfaces that store energy for membrane actions. The effective thermal response is obtained similarly, where 2-D nanoplatelets are represented using regions of high conductivity. Using the homogenization simulation, macroscopic stiffness properties and thermal conductivity properties are modeled and then compared to the experimental data. The proposed surface image assisted modeling yields reasonable effective mechanical and thermal properties, where the Kapitza effect plays an important part in effective thermal properties.

18.
Materials (Basel) ; 12(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438469

RESUMEN

The work involves fabrication of natural fibre/Elium® composites using resin infusion technique. The jute fabrics were treated using phosphorus-carbon based flame retardant (FR) agent, a phosphonate solution and graphene nano-platelet (GnP), followed by resin infusion, to produce FR and graphene-based composites. The properties of these composites were compared with those of the Control (jute fabric/Elium®). As obtained from the cone calorimeter and Fourier transform infrared spectroscopy, the peak heat release rate reduced significantly after the FR and GnP treatments of fabrics whereas total smoke release and quantity of carbon monoxide increased with the incorporation of FR. The addition of GnP had almost no effect on carbon monoxide and carbon dioxide yield. Dynamic mechanical analysis demonstrated that coating jute fabrics with GnP particles led to an enhanced glass transition temperature by 14%. Scanning electron microscopy showed fibre pull-out locations in the tensile fracture surface of the laminates after incorporation of both fillers, which resulted in reduced tensile properties.

19.
RSC Adv ; 9(57): 33454-33459, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35529107

RESUMEN

Boron nitride (BN) is a stable 2D material with physiochemical properties similar to graphene-based nanomaterials. We have recently demonstrated that vertically aligned coatings of graphene-based nanomaterials provide strong antibacterial effects on various surfaces. Here we investigated whether BN, a nanomaterial with extensive similarities to graphene, might exhibit similar antibacterial properties. To test this, we developed a novel composite material using BN and low density polyethylene (LDPE) polymer. The composite was extruded under controlled melt flow conditions leading to highly structured morphology, with BN oriented in the extrusion flow direction. Nanocomposite extruded surfaces perpendicular to the flow direction were etched, thus exposing BN nanoparticles embedded in the matrix. The antimicrobial activity of extruded samples was evaluated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus by the colony forming units (CFUs) counting method. Furthermore, the bactericidal effect of oriented BN against E. coli and S. aureus was evaluated by scanning electron microscopy (SEM) and live/dead viability assay. Our results suggest that BN nanoflakes on the extruded BN/LDPE composite physically interact with the bacterial cellular envelope, leading to irreparable physical damage. Therefore, we propose that BN-polymer composites might be useful to develop polymer based biomedical devices protected against bacterial adhesion, and thus minimize device associated infections.

20.
Nanomaterials (Basel) ; 7(2)2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28336857

RESUMEN

The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP) and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...